Nuprl Lemma : grp_of_module_wf

A:Type. ∀m:algebra_sig{i:l}(A).  (m↓grp ∈ GrpSig)


Proof




Definitions occuring in Statement :  grp_of_module: m↓grp algebra_sig: algebra_sig{i:l}(A) all: x:A. B[x] member: t ∈ T universe: Type grp_sig: GrpSig
Definitions unfolded in proof :  grp_of_module: m↓grp all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  add_grp_of_rng_wf rng_of_alg_wf algebra_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination hypothesisEquality hypothesis universeEquality

Latex:
\mforall{}A:Type.  \mforall{}m:algebra\_sig\{i:l\}(A).    (m\mdownarrow{}grp  \mmember{}  GrpSig)



Date html generated: 2016_05_16-AM-07_26_21
Last ObjectModification: 2015_12_28-PM-05_08_04

Theory : algebras_1


Home Index