Nuprl Lemma : grp_of_module_wf
∀A:Type. ∀m:algebra_sig{i:l}(A).  (m↓grp ∈ GrpSig)
Proof
Definitions occuring in Statement : 
grp_of_module: m↓grp
, 
algebra_sig: algebra_sig{i:l}(A)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
grp_sig: GrpSig
Definitions unfolded in proof : 
grp_of_module: m↓grp
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
add_grp_of_rng_wf, 
rng_of_alg_wf, 
algebra_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}m:algebra\_sig\{i:l\}(A).    (m\mdownarrow{}grp  \mmember{}  GrpSig)
Date html generated:
2016_05_16-AM-07_26_21
Last ObjectModification:
2015_12_28-PM-05_08_04
Theory : algebras_1
Home
Index