Nuprl Lemma : rng_of_alg_wf
∀A:Type. ∀a:algebra_sig{i:l}(A).  (a↓rg ∈ RngSig)
Proof
Definitions occuring in Statement : 
rng_of_alg: a↓rg
, 
algebra_sig: algebra_sig{i:l}(A)
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
rng_of_alg: a↓rg
, 
rng_sig: RngSig
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
Lemmas referenced : 
alg_car_wf, 
alg_eq_wf, 
alg_le_wf, 
alg_plus_wf, 
alg_zero_wf, 
alg_minus_wf, 
alg_times_wf, 
alg_one_wf, 
alg_div_wf, 
unit_wf2, 
bool_wf, 
algebra_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
dependent_pairEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
functionEquality, 
unionEquality, 
productEquality, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}a:algebra\_sig\{i:l\}(A).    (a\mdownarrow{}rg  \mmember{}  RngSig)
Date html generated:
2016_05_16-AM-07_26_19
Last ObjectModification:
2015_12_28-PM-05_08_20
Theory : algebras_1
Home
Index