Nuprl Lemma : alg_div_wf
∀A:Type. ∀a:algebra_sig{i:l}(A).  (a.div ∈ a.car ⟶ a.car ⟶ (a.car?))
Proof
Definitions occuring in Statement : 
alg_div: a.div
, 
alg_car: a.car
, 
algebra_sig: algebra_sig{i:l}(A)
, 
all: ∀x:A. B[x]
, 
unit: Unit
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
algebra_sig: algebra_sig{i:l}(A)
, 
alg_div: a.div
, 
alg_car: a.car
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
algebra_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
lemma_by_obid, 
dependent_functionElimination, 
universeEquality
Latex:
\mforall{}A:Type.  \mforall{}a:algebra\_sig\{i:l\}(A).    (a.div  \mmember{}  a.car  {}\mrightarrow{}  a.car  {}\mrightarrow{}  (a.car?))
Date html generated:
2016_05_16-AM-07_26_10
Last ObjectModification:
2015_12_28-PM-05_08_10
Theory : algebras_1
Home
Index