Nuprl Lemma : grp_eq_shift_right

[g:IGroup]. ∀[a,b:|g|].  uiff(a b ∈ |g|;e (b (~ a)) ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_inv: ~ grp_id: e grp_op: * grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: igrp: IGroup imon: IMonoid infix_ap: y rev_implies:  Q squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q implies:  Q
Lemmas referenced :  equal_wf grp_car_wf grp_id_wf grp_op_wf grp_inv_wf igrp_wf squash_wf true_wf mon_ident iff_weakening_equal infix_ap_wf grp_inverse uiff_wf mon_assoc iff_weakening_uiff grp_eq_op_r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin independent_pairEquality isect_memberEquality isectElimination hypothesisEquality axiomEquality hypothesis extract_by_obid setElimination rename equalityTransitivity equalitySymmetry because_Cache applyEquality independent_pairFormation addLevel independent_isectElimination lambdaEquality imageElimination universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination cumulativity levelHypothesis

Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b:|g|].    uiff(a  =  b;e  =  (b  *  (\msim{}  a)))



Date html generated: 2017_10_01-AM-08_13_47
Last ObjectModification: 2017_02_28-PM-01_58_18

Theory : groups_1


Home Index