Nuprl Lemma : grp_eq_op_r
∀[g:IGroup]. ∀[a,b,c:|g|].  uiff(a = b ∈ |g|;(a * c) = (b * c) ∈ |g|)
Proof
Definitions occuring in Statement : 
igrp: IGroup
, 
grp_op: *
, 
grp_car: |g|
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
igrp: IGroup
, 
imon: IMonoid
, 
infix_ap: x f y
Lemmas referenced : 
equal_wf, 
grp_car_wf, 
grp_op_wf, 
igrp_wf, 
grp_op_r, 
grp_op_cancel_r
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
productElimination, 
independent_pairEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination
Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b,c:|g|].    uiff(a  =  b;(a  *  c)  =  (b  *  c))
Date html generated:
2016_05_15-PM-00_08_25
Last ObjectModification:
2015_12_26-PM-11_45_52
Theory : groups_1
Home
Index