Nuprl Lemma : grp_eq_op_r

[g:IGroup]. ∀[a,b,c:|g|].  uiff(a b ∈ |g|;(a c) (b c) ∈ |g|)


Proof




Definitions occuring in Statement :  igrp: IGroup grp_op: * grp_car: |g| uiff: uiff(P;Q) uall: [x:A]. B[x] infix_ap: y equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: igrp: IGroup imon: IMonoid infix_ap: y
Lemmas referenced :  equal_wf grp_car_wf grp_op_wf igrp_wf grp_op_r grp_op_cancel_r
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation hypothesis lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality applyEquality sqequalRule productElimination independent_pairEquality isect_memberEquality axiomEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination

Latex:
\mforall{}[g:IGroup].  \mforall{}[a,b,c:|g|].    uiff(a  =  b;(a  *  c)  =  (b  *  c))



Date html generated: 2016_05_15-PM-00_08_25
Last ObjectModification: 2015_12_26-PM-11_45_52

Theory : groups_1


Home Index