Nuprl Lemma : grp_op_r
∀[g:GrpSig]. ∀[a,b,c:|g|].  (a * c) = (b * c) ∈ |g| supposing a = b ∈ |g|
Proof
Definitions occuring in Statement : 
grp_op: *
, 
grp_car: |g|
, 
grp_sig: GrpSig
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
infix_ap: x f y
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
infix_ap: x f y
Lemmas referenced : 
equal_wf, 
grp_car_wf, 
grp_sig_wf, 
infix_ap_wf, 
grp_op_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
hyp_replacement, 
Error :applyLambdaEquality, 
applyEquality
Latex:
\mforall{}[g:GrpSig].  \mforall{}[a,b,c:|g|].    (a  *  c)  =  (b  *  c)  supposing  a  =  b
Date html generated:
2016_10_21-AM-11_25_18
Last ObjectModification:
2016_07_12-PM-01_05_50
Theory : groups_1
Home
Index