Nuprl Lemma : rng_plus_zero
∀[r:Rng]. ∀[a:|r|]. (((a +r 0) = a ∈ |r|) ∧ ((0 +r a) = a ∈ |r|))
Proof
Definitions occuring in Statement :
rng: Rng
,
rng_zero: 0
,
rng_plus: +r
,
rng_car: |r|
,
uall: ∀[x:A]. B[x]
,
infix_ap: x f y
,
and: P ∧ Q
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
grp: Group{i}
,
mon: Mon
,
imon: IMonoid
,
prop: ℙ
,
add_grp_of_rng: r↓+gp
,
grp_car: |g|
,
pi1: fst(t)
,
grp_op: *
,
pi2: snd(t)
,
grp_id: e
,
and: P ∧ Q
,
rng: Rng
Lemmas referenced :
mon_ident,
add_grp_of_rng_wf_a,
grp_sig_wf,
monoid_p_wf,
grp_car_wf,
grp_op_wf,
grp_id_wf,
inverse_wf,
grp_inv_wf,
rng_car_wf,
rng_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
applyEquality,
sqequalRule,
lambdaEquality,
setElimination,
rename,
setEquality,
cumulativity,
isect_memberEquality,
productElimination,
independent_pairEquality,
axiomEquality
Latex:
\mforall{}[r:Rng]. \mforall{}[a:|r|]. (((a +r 0) = a) \mwedge{} ((0 +r a) = a))
Date html generated:
2016_05_15-PM-00_21_23
Last ObjectModification:
2015_12_27-AM-00_02_15
Theory : rings_1
Home
Index