Nuprl Lemma : rng_plus_zero

[r:Rng]. ∀[a:|r|].  (((a +r 0) a ∈ |r|) ∧ ((0 +r a) a ∈ |r|))


Proof




Definitions occuring in Statement :  rng: Rng rng_zero: 0 rng_plus: +r rng_car: |r| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B grp: Group{i} mon: Mon imon: IMonoid prop: add_grp_of_rng: r↓+gp grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e and: P ∧ Q rng: Rng
Lemmas referenced :  mon_ident add_grp_of_rng_wf_a grp_sig_wf monoid_p_wf grp_car_wf grp_op_wf grp_id_wf inverse_wf grp_inv_wf rng_car_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality sqequalRule lambdaEquality setElimination rename setEquality cumulativity isect_memberEquality productElimination independent_pairEquality axiomEquality

Latex:
\mforall{}[r:Rng].  \mforall{}[a:|r|].    (((a  +r  0)  =  a)  \mwedge{}  ((0  +r  a)  =  a))



Date html generated: 2016_05_15-PM-00_21_23
Last ObjectModification: 2015_12_27-AM-00_02_15

Theory : rings_1


Home Index