Nuprl Lemma : dist_hom_over_mset_for

s:DSet. ∀m,n:IAbMonoid. ∀f:MonHom(m,n). ∀a:MSet{s}. ∀g:|s| ⟶ |m|.
  ((f (msFor{m} x ∈ a. g[x])) (msFor{n} x ∈ a. (f g[x])) ∈ |n|)


Proof




Definitions occuring in Statement :  mset_for: mset_for mset: MSet{s} so_apply: x[s] all: x:A. B[x] apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) iabmonoid: IAbMonoid grp_car: |g| dset: DSet set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] iabmonoid: IAbMonoid imon: IMonoid so_lambda: λ2x.t[x] top: Top so_apply: x[s] dset: DSet monoid_hom: MonHom(M1,M2) implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  monoid_hom_wf iabmonoid_wf dset_wf mset_for_elim_lemma all_mset_elim all_wf set_car_wf grp_car_wf equal_wf mset_for_wf mset_wf sq_stable__all sq_stable__equal list_wf mon_for_wf dist_hom_over_mon_for
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis addLevel sqequalRule dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaEquality functionEquality applyEquality because_Cache independent_functionElimination productElimination levelHypothesis

Latex:
\mforall{}s:DSet.  \mforall{}m,n:IAbMonoid.  \mforall{}f:MonHom(m,n).  \mforall{}a:MSet\{s\}.  \mforall{}g:|s|  {}\mrightarrow{}  |m|.
    ((f  (msFor\{m\}  x  \mmember{}  a.  g[x]))  =  (msFor\{n\}  x  \mmember{}  a.  (f  g[x])))



Date html generated: 2016_05_16-AM-07_47_55
Last ObjectModification: 2015_12_28-PM-06_03_21

Theory : mset


Home Index