Nuprl Lemma : dist_hom_over_mset_for
∀s:DSet. ∀m,n:IAbMonoid. ∀f:MonHom(m,n). ∀a:MSet{s}. ∀g:|s| ⟶ |m|.
  ((f (msFor{m} x ∈ a. g[x])) = (msFor{n} x ∈ a. (f g[x])) ∈ |n|)
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
mset: MSet{s}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
equal: s = t ∈ T
, 
monoid_hom: MonHom(M1,M2)
, 
iabmonoid: IAbMonoid
, 
grp_car: |g|
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iabmonoid: IAbMonoid
, 
imon: IMonoid
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
so_apply: x[s]
, 
dset: DSet
, 
monoid_hom: MonHom(M1,M2)
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
Lemmas referenced : 
monoid_hom_wf, 
iabmonoid_wf, 
dset_wf, 
mset_for_elim_lemma, 
all_mset_elim, 
all_wf, 
set_car_wf, 
grp_car_wf, 
equal_wf, 
mset_for_wf, 
mset_wf, 
sq_stable__all, 
sq_stable__equal, 
list_wf, 
mon_for_wf, 
dist_hom_over_mon_for
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
addLevel, 
sqequalRule, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
functionEquality, 
applyEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
levelHypothesis
Latex:
\mforall{}s:DSet.  \mforall{}m,n:IAbMonoid.  \mforall{}f:MonHom(m,n).  \mforall{}a:MSet\{s\}.  \mforall{}g:|s|  {}\mrightarrow{}  |m|.
    ((f  (msFor\{m\}  x  \mmember{}  a.  g[x]))  =  (msFor\{n\}  x  \mmember{}  a.  (f  g[x])))
Date html generated:
2016_05_16-AM-07_47_55
Last ObjectModification:
2015_12_28-PM-06_03_21
Theory : mset
Home
Index