Nuprl Lemma : monoid_hom_wf
∀[A,B:GrpSig].  (MonHom(A,B) ∈ Type)
Proof
Definitions occuring in Statement : 
monoid_hom: MonHom(M1,M2)
, 
grp_sig: GrpSig
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
monoid_hom: MonHom(M1,M2)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
grp_car_wf, 
monoid_hom_p_wf, 
grp_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
setEquality, 
functionEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[A,B:GrpSig].    (MonHom(A,B)  \mmember{}  Type)
Date html generated:
2016_05_15-PM-00_09_53
Last ObjectModification:
2015_12_26-PM-11_45_01
Theory : groups_1
Home
Index