Nuprl Lemma : monoid_hom_wf

[A,B:GrpSig].  (MonHom(A,B) ∈ Type)


Proof




Definitions occuring in Statement :  monoid_hom: MonHom(M1,M2) grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  monoid_hom: MonHom(M1,M2) uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  grp_car_wf monoid_hom_p_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setEquality functionEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A,B:GrpSig].    (MonHom(A,B)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-00_09_53
Last ObjectModification: 2015_12_26-PM-11_45_01

Theory : groups_1


Home Index