Nuprl Lemma : monoid_hom_p_wf

[a,b:GrpSig]. ∀[f:|a| ⟶ |b|].  (IsMonHom{a,b}(f) ∈ ℙ)


Proof




Definitions occuring in Statement :  monoid_hom_p: IsMonHom{M1,M2}(f) grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  monoid_hom_p: IsMonHom{M1,M2}(f) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  and_wf fun_thru_2op_wf grp_car_wf grp_op_wf equal_wf grp_id_wf grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[a,b:GrpSig].  \mforall{}[f:|a|  {}\mrightarrow{}  |b|].    (IsMonHom\{a,b\}(f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_09_46
Last ObjectModification: 2015_12_26-PM-11_45_13

Theory : groups_1


Home Index