Nuprl Lemma : fun_thru_2op_wf
∀[A,B:Type]. ∀[opa:A ⟶ A ⟶ A]. ∀[opb:B ⟶ B ⟶ B]. ∀[f:A ⟶ B].  (FunThru2op(A;B;opa;opb;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
fun_thru_2op: FunThru2op(A;B;opa;opb;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
Lemmas referenced : 
uall_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[opa:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[opb:B  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[f:A  {}\mrightarrow{}  B].    (FunThru2op(A;B;opa;opb;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_02_49
Last ObjectModification:
2015_12_26-PM-11_25_13
Theory : gen_algebra_1
Home
Index