Nuprl Definition : free_abmonoid

FAbMon(S) ==
  mon:AbMon
  × inj:|S| ⟶ |mon|
  × (mon':AbMon ⟶ f':(|S| ⟶ |mon'|) ⟶ {!g:MonHom(mon,mon') (g inj) f' ∈ (|S| ⟶ |mon'|)})



Definitions occuring in Statement :  compose: g unique_set: {!x:T P[x]} function: x:A ⟶ B[x] product: x:A × B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) abmonoid: AbMon grp_car: |g| set_car: |p|
Definitions occuring in definition :  product: x:A × B[x] abmonoid: AbMon unique_set: {!x:T P[x]} monoid_hom: MonHom(M1,M2) equal: t ∈ T function: x:A ⟶ B[x] set_car: |p| grp_car: |g| compose: g

Latex:
FAbMon(S)  ==
    mon:AbMon
    \mtimes{}  inj:|S|  {}\mrightarrow{}  |mon|
    \mtimes{}  (mon':AbMon  {}\mrightarrow{}  f':(|S|  {}\mrightarrow{}  |mon'|)  {}\mrightarrow{}  \{!g:MonHom(mon,mon')  |  (g  o  inj)  =  f'\})



Date html generated: 2016_05_16-AM-07_48_16
Last ObjectModification: 2015_09_23-AM-09_52_06

Theory : mset


Home Index