Step
*
1
1
of Lemma
mset_fmon_wf
1. s : DSet
2. m : AbMon
3. f : |s| ⟶ |m|
⊢ λy:MSet{s}. msFor{m} z ∈ y
(f z) ∈ MonHom(mset_mon{s},m)
BY
{ % Check umap is a homomorphism %
((MemTypeCD) THEN Auto)
THEN AbEval ``monoid_hom_p fun_thru_2op`` 0
THEN ((GenUnivCD) THENA Auto)
}
1
1. s : DSet
2. m : AbMon
3. f : |s| ⟶ |m|
4. a1 : MSet{s}
5. a2 : MSet{s}
⊢ (msFor{m} z ∈ a1 + a2. (f z)) = ((msFor{m} z ∈ a1. (f z)) * (msFor{m} z ∈ a2. (f z))) ∈ |m|
2
1. s : DSet
2. m : AbMon
3. f : |s| ⟶ |m|
⊢ e = e ∈ |m|
Latex:
Latex:
1. s : DSet
2. m : AbMon
3. f : |s| {}\mrightarrow{} |m|
\mvdash{} \mlambda{}y:MSet\{s\}. msFor\{m\} z \mmember{} y
(f z) \mmember{} MonHom(mset\_mon\{s\},m)
By
Latex:
\% Check umap is a homomorphism \%
((MemTypeCD) THEN Auto)
THEN AbEval ``monoid\_hom\_p fun\_thru\_2op`` 0
THEN ((GenUnivCD) THENA Auto)
Home
Index