Nuprl Lemma : mset_for_null_lemma

f,g,s:Top.  (msFor{g} x ∈ 0{s}. f[x] e)


Proof




Definitions occuring in Statement :  mset_for: mset_for null_mset: 0{s} top: Top so_apply: x[s] all: x:A. B[x] sqequal: t grp_id: e
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T mset_for: mset_for mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] reduce: reduce(f;k;as) list_ind: list_ind map: map(f;as) null_mset: 0{s} nil: [] it: grp_id: e pi1: fst(t) pi2: snd(t)
Lemmas referenced :  istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut hypothesis inhabitedIsType hypothesisEquality introduction extract_by_obid sqequalRule

Latex:
\mforall{}f,g,s:Top.    (msFor\{g\}  x  \mmember{}  0\{s\}.  f[x]  \msim{}  e)



Date html generated: 2019_10_16-PM-01_06_33
Last ObjectModification: 2018_10_08-PM-00_46_02

Theory : mset


Home Index