Nuprl Lemma : mset_for_null_lemma
∀f,g,s:Top.  (msFor{g} x ∈ 0{s}. f[x] ~ e)
Proof
Definitions occuring in Statement : 
mset_for: mset_for, 
null_mset: 0{s}
, 
top: Top
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
, 
grp_id: e
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
mset_for: mset_for, 
mon_for: For{g} x ∈ as. f[x]
, 
for: For{T,op,id} x ∈ as. f[x]
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
map: map(f;as)
, 
null_mset: 0{s}
, 
nil: []
, 
it: ⋅
, 
grp_id: e
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalRule
Latex:
\mforall{}f,g,s:Top.    (msFor\{g\}  x  \mmember{}  0\{s\}.  f[x]  \msim{}  e)
Date html generated:
2019_10_16-PM-01_06_33
Last ObjectModification:
2018_10_08-PM-00_46_02
Theory : mset
Home
Index