Nuprl Definition : gcopower

gcopower{i}(s;g) ==
  {c:gcopower_sig{i:l}(s;g)| 
   IsEqFun(|c.grp|;=b)
   ∧ grp_p(c.grp)
   ∧ Comm(|c.grp|;*)
   ∧ (∀j:|s|. IsMonHom{g,c.grp}(c.inj j))
   ∧ (∀h:AbGrp. ∀f:|s| ⟶ MonHom(g,h).
        (c.umap f) !v:|c.grp| ⟶ |h|. (IsMonHom{c.grp,h}(v) ∧ (∀j:|s|. ((f j) (v (c.inj j)) ∈ (|g| ⟶ |h|)))))} 



Definitions occuring in Statement :  grp_p: grp_p(g) gcopower_umap: g1.umap gcopower_inj: g1.inj gcopower_grp: g1.grp gcopower_sig: gcopower_sig{i:l}(s;g) eqfun_p: IsEqFun(T;eq) comm: Comm(T;op) compose: g uni_sat: !x:T. Q[x] all: x:A. B[x] and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T monoid_hom: MonHom(M1,M2) monoid_hom_p: IsMonHom{M1,M2}(f) abgrp: AbGrp grp_op: * grp_eq: =b grp_car: |g| set_car: |p|
Definitions occuring in definition :  set: {x:A| B[x]}  gcopower_sig: gcopower_sig{i:l}(s;g) eqfun_p: IsEqFun(T;eq) grp_eq: =b grp_p: grp_p(g) comm: Comm(T;op) grp_op: * abgrp: AbGrp monoid_hom: MonHom(M1,M2) uni_sat: !x:T. Q[x] gcopower_umap: g1.umap and: P ∧ Q monoid_hom_p: IsMonHom{M1,M2}(f) gcopower_grp: g1.grp all: x:A. B[x] set_car: |p| equal: t ∈ T function: x:A ⟶ B[x] grp_car: |g| compose: g apply: a gcopower_inj: g1.inj

Latex:
gcopower\{i\}(s;g)  ==
    \{c:gcopower\_sig\{i:l\}(s;g)| 
      IsEqFun(|c.grp|;=\msubb{})
      \mwedge{}  grp\_p(c.grp)
      \mwedge{}  Comm(|c.grp|;*)
      \mwedge{}  (\mforall{}j:|s|.  IsMonHom\{g,c.grp\}(c.inj  j))
      \mwedge{}  (\mforall{}h:AbGrp.  \mforall{}f:|s|  {}\mrightarrow{}  MonHom(g,h).
                (c.umap  h  f)  =  !v:|c.grp|  {}\mrightarrow{}  |h|
                                                  (IsMonHom\{c.grp,h\}(v)  \mwedge{}  (\mforall{}j:|s|.  ((f  j)  =  (v  o  (c.inj  j))))))\} 



Date html generated: 2016_05_16-AM-08_14_01
Last ObjectModification: 2015_09_23-AM-09_52_37

Theory : polynom_1


Home Index