Step
*
of Lemma
oal_hgp_wf2
∀s:LOSet. ∀g:OGrp. (oal_hgp(s;g) ∈ OCMon)
BY
{ (((RepD THENM BLemma `inj_into_ocmon`) THENA Auto) THEN Assert ⌜(g↓hgrp ∈ AbDMon) ∧ (g ∈ AbDMon)⌝⋅) }
1
.....assertion.....
1. s : LOSet@i'
2. g : OGrp@i'
⊢ (g↓hgrp ∈ AbDMon) ∧ (g ∈ AbDMon)
2
1. s : LOSet@i'
2. g : OGrp@i'
3. (g↓hgrp ∈ AbDMon) ∧ (g ∈ AbDMon)
⊢ ∃h:OCMon
∃f:|oal_hgp(s;g)| ⟶ |h|
(IsMonHomInj(oal_hgp(s;g);h;f)
∧ RelsIso(|oal_hgp(s;g)|;|h|;x,y.↑(x =b y);x,y.↑(x =b y);f)
∧ RelsIso(|oal_hgp(s;g)|;|h|;x,y.↑(x ≤b y);x,y.↑(x ≤b y);f))
Latex:
Latex:
\mforall{}s:LOSet. \mforall{}g:OGrp. (oal\_hgp(s;g) \mmember{} OCMon)
By
Latex:
(((RepD THENM BLemma `inj\_into\_ocmon`) THENA Auto) THEN Assert \mkleeneopen{}(g\mdownarrow{}hgrp \mmember{} AbDMon) \mwedge{} (g \mmember{} AbDMon)\mkleeneclose{}\mcdot{})
Home
Index