Step
*
1
of Lemma
aa_fib_count_wf
1. n : 
@i
2. 
n1:
. aa_fib_count(n1) 
 
 
 
 supposing n1 < n
 aa_fib_count(n) 
 
 
 
BY
{ ProveWfLemma }
1
1. n : 
@i
2. 
n1:
. aa_fib_count(n1) 
 
 
 
 supposing n1 < n
 fix((
f,n. if (n =
 0) 
(n =
 1)
            then <1, 0>
            else <(fst((f (n - 1)))) + (fst((f (n - 2)))), (snd((f (n - 1)))) + (snd((f (n - 2))))>
            fi )) 
  n 
 
 
 
1.  n  :  \mBbbN{}@i
2.  \mforall{}n1:\mBbbN{}.  aa\_fib\_count(n1)  \mmember{}  \mBbbN{}  \mtimes{}  \mBbbN{}  supposing  n1  <  n
\mvdash{}  aa\_fib\_count(n)  \mmember{}  \mBbbN{}  \mtimes{}  \mBbbN{}
By
ProveWfLemma
Home
Index