Step
*
1
of Lemma
aa_pc_3n_new
1. 
m:
. 
n:
.  ((m ~ snd(aa_3n_plus_1_depth_pi(n))) 
 (m 
 0 ))@i
2. d : 
@i
3. 
d1:
     
n:
       (((n > 0) 
 (d1 ~ snd(aa_3n_plus_1_depth_pi(n)))) 
 (
m:
. ((fst(aa_3n_plus_1_depth_pi(n)) ~ m) 
 (n 
 2^m)))) 
     supposing d1 < d
 
n:
. (((n > 0) 
 (d ~ snd(aa_3n_plus_1_depth_pi(n)))) 
 (
m:
. ((fst(aa_3n_plus_1_depth_pi(n)) ~ m) 
 (n 
 2^m))))
BY
{ RepeatFor 2 (D 0 THENA Auto)
 }
1
1. 
m:
. 
n:
.  ((m ~ snd(aa_3n_plus_1_depth_pi(n))) 
 (m 
 0 ))@i
2. d : 
@i
3. 
d1:
     
n:
       (((n > 0) 
 (d1 ~ snd(aa_3n_plus_1_depth_pi(n)))) 
 (
m:
. ((fst(aa_3n_plus_1_depth_pi(n)) ~ m) 
 (n 
 2^m)))) 
     supposing d1 < d
4. n : 
@i
5. (n > 0) 
 (d ~ snd(aa_3n_plus_1_depth_pi(n)))@i
 
m:
. ((fst(aa_3n_plus_1_depth_pi(n)) ~ m) 
 (n 
 2^m))
1.  \mforall{}m:\mBbbZ{}.  \mforall{}n:\mBbbN{}.    ((m  \msim{}  snd(aa\_3n\_plus\_1\_depth\_pi(n)))  {}\mRightarrow{}  (m  \mgeq{}  0  ))@i
2.  d  :  \mBbbN{}@i
3.  \mforall{}d1:\mBbbN{}
          \mforall{}n:\mBbbZ{}
              (((n  >  0)  \mwedge{}  (d1  \msim{}  snd(aa\_3n\_plus\_1\_depth\_pi(n))))
              {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  ((fst(aa\_3n\_plus\_1\_depth\_pi(n))  \msim{}  m)  \mwedge{}  (n  \mleq{}  2\^{}m)))) 
          supposing  d1  <  d
\mvdash{}  \mforall{}n:\mBbbZ{}
        (((n  >  0)  \mwedge{}  (d  \msim{}  snd(aa\_3n\_plus\_1\_depth\_pi(n))))
        {}\mRightarrow{}  (\mexists{}m:\mBbbN{}.  ((fst(aa\_3n\_plus\_1\_depth\_pi(n))  \msim{}  m)  \mwedge{}  (n  \mleq{}  2\^{}m))))
By
RepeatFor  2  (D  0  THENA  Auto)\mcdot{}
Home
Index