Step
*
1
3
2
1
1
1
1
of Lemma
cs-ref-map3-predecided
1. [V] : Type
2. L : consensus-state3(V) List@i
3. v : V@i
4. ∀[v':V]. v' = v ∈ V supposing (CONSIDERING[v'] ∈ L) ∨ (COMMITED[v'] ∈ L) 
   supposing (CONSIDERING[v] ∈ L) ∨ (COMMITED[v] ∈ L)
5. ∀v:V. ((COMMITED[v] ∈ L) 
⇐⇒ cs-ref-map3(L) = Decided[v] ∈ consensus-state2(V))
6. filter(λx.cs-is-committed(x);L) = [] ∈ (consensus-state3(V) List)
7. filter(λx.cs-is-considering(x);L) ∈ {x:consensus-state3(V)| ↑cs-is-considering(x)}  List
8. u : {x:consensus-state3(V)| ↑cs-is-considering(x)} 
9. w : {x:consensus-state3(V)| ↑cs-is-considering(x)}  List
10. filter(λx.cs-is-considering(x);L) = [u / w] ∈ ({x:consensus-state3(V)| ↑cs-is-considering(x)}  List)@i
11. ¬([u / w] = [] ∈ (consensus-state3(V) List))@i
12. (u ∈ L)
13. ↑cs-is-considering(u)
14. PREDECIDED[cs-considered-val(u)] = PREDECIDED[v] ∈ consensus-state2(V)@i
15. u = CONSIDERING[cs-considered-val(u)] ∈ consensus-state3(V)
⊢ (CONSIDERING[v] ∈ L)
BY
{ Assert ⌜cs-considered-val(u) = v ∈ V⌝⋅ }
1
.....assertion..... 
1. V : Type
2. L : consensus-state3(V) List@i
3. v : V@i
4. ∀[v':V]. v' = v ∈ V supposing (CONSIDERING[v'] ∈ L) ∨ (COMMITED[v'] ∈ L) 
   supposing (CONSIDERING[v] ∈ L) ∨ (COMMITED[v] ∈ L)
5. ∀v:V. ((COMMITED[v] ∈ L) 
⇐⇒ cs-ref-map3(L) = Decided[v] ∈ consensus-state2(V))
6. filter(λx.cs-is-committed(x);L) = [] ∈ (consensus-state3(V) List)
7. filter(λx.cs-is-considering(x);L) ∈ {x:consensus-state3(V)| ↑cs-is-considering(x)}  List
8. u : {x:consensus-state3(V)| ↑cs-is-considering(x)} 
9. w : {x:consensus-state3(V)| ↑cs-is-considering(x)}  List
10. filter(λx.cs-is-considering(x);L) = [u / w] ∈ ({x:consensus-state3(V)| ↑cs-is-considering(x)}  List)@i
11. ¬([u / w] = [] ∈ (consensus-state3(V) List))@i
12. (u ∈ L)
13. ↑cs-is-considering(u)
14. PREDECIDED[cs-considered-val(u)] = PREDECIDED[v] ∈ consensus-state2(V)@i
15. u = CONSIDERING[cs-considered-val(u)] ∈ consensus-state3(V)
⊢ cs-considered-val(u) = v ∈ V
2
1. [V] : Type
2. L : consensus-state3(V) List@i
3. v : V@i
4. ∀[v':V]. v' = v ∈ V supposing (CONSIDERING[v'] ∈ L) ∨ (COMMITED[v'] ∈ L) 
   supposing (CONSIDERING[v] ∈ L) ∨ (COMMITED[v] ∈ L)
5. ∀v:V. ((COMMITED[v] ∈ L) 
⇐⇒ cs-ref-map3(L) = Decided[v] ∈ consensus-state2(V))
6. filter(λx.cs-is-committed(x);L) = [] ∈ (consensus-state3(V) List)
7. filter(λx.cs-is-considering(x);L) ∈ {x:consensus-state3(V)| ↑cs-is-considering(x)}  List
8. u : {x:consensus-state3(V)| ↑cs-is-considering(x)} 
9. w : {x:consensus-state3(V)| ↑cs-is-considering(x)}  List
10. filter(λx.cs-is-considering(x);L) = [u / w] ∈ ({x:consensus-state3(V)| ↑cs-is-considering(x)}  List)@i
11. ¬([u / w] = [] ∈ (consensus-state3(V) List))@i
12. (u ∈ L)
13. ↑cs-is-considering(u)
14. PREDECIDED[cs-considered-val(u)] = PREDECIDED[v] ∈ consensus-state2(V)@i
15. u = CONSIDERING[cs-considered-val(u)] ∈ consensus-state3(V)
16. cs-considered-val(u) = v ∈ V
⊢ (CONSIDERING[v] ∈ L)
Latex:
Latex:
1.  [V]  :  Type
2.  L  :  consensus-state3(V)  List@i
3.  v  :  V@i
4.  \mforall{}[v':V].  v'  =  v  supposing  (CONSIDERING[v']  \mmember{}  L)  \mvee{}  (COMMITED[v']  \mmember{}  L) 
      supposing  (CONSIDERING[v]  \mmember{}  L)  \mvee{}  (COMMITED[v]  \mmember{}  L)
5.  \mforall{}v:V.  ((COMMITED[v]  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  cs-ref-map3(L)  =  Decided[v])
6.  filter(\mlambda{}x.cs-is-committed(x);L)  =  []
7.  filter(\mlambda{}x.cs-is-considering(x);L)  \mmember{}  \{x:consensus-state3(V)|  \muparrow{}cs-is-considering(x)\}    List
8.  u  :  \{x:consensus-state3(V)|  \muparrow{}cs-is-considering(x)\} 
9.  w  :  \{x:consensus-state3(V)|  \muparrow{}cs-is-considering(x)\}    List
10.  filter(\mlambda{}x.cs-is-considering(x);L)  =  [u  /  w]@i
11.  \mneg{}([u  /  w]  =  [])@i
12.  (u  \mmember{}  L)
13.  \muparrow{}cs-is-considering(u)
14.  PREDECIDED[cs-considered-val(u)]  =  PREDECIDED[v]@i
15.  u  =  CONSIDERING[cs-considered-val(u)]
\mvdash{}  (CONSIDERING[v]  \mmember{}  L)
By
Latex:
Assert  \mkleeneopen{}cs-considered-val(u)  =  v\mkleeneclose{}\mcdot{}
Home
Index