Nuprl Lemma : flow-graph-information-flow-relation
∀[Info,T:Type].
  ∀S:Id List. ∀G:Graph(S). ∀F:information-flow(T;S). ∀es:EO+(Info). ∀X:EClass(T). ∀e:E(X). ∀i:Id.
    ((i ∈ S)
    ⇒ es-interface-locs-list(es;X;S)
    ⇒ flow-graph(S;T;F;G)
    ⇒ (loc(e)⟶i)∈G supposing information-flow-relation(es;X;F;e;i))
Proof
Definitions occuring in Statement : 
information-flow-relation: information-flow-relation(es;X;F;e;i), 
es-interface-locs-list: es-interface-locs-list(es;X;S), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
flow-graph: flow-graph(S;T;F;G), 
information-flow: information-flow(T;S), 
es-loc: loc(e), 
id-graph-edge: (i⟶j)∈G, 
id-graph: Graph(S), 
Id: Id, 
l_member: (x ∈ l), 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uimplies: b supposing a, 
member: t ∈ T, 
information-flow-relation: information-flow-relation(es;X;F;e;i), 
prop: ℙ, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
top: Top, 
information-flow: information-flow(T;S), 
es-E-interface: E(X), 
can-apply: can-apply(f;x), 
guard: {T}, 
es-interface-locs-list: es-interface-locs-list(es;X;S), 
flow-graph: flow-graph(S;T;F;G)
Latex:
\mforall{}[Info,T:Type].
    \mforall{}S:Id  List.  \mforall{}G:Graph(S).  \mforall{}F:information-flow(T;S).  \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).  \mforall{}e:E(X).  \mforall{}i:Id.
        ((i  \mmember{}  S)
        {}\mRightarrow{}  es-interface-locs-list(es;X;S)
        {}\mRightarrow{}  flow-graph(S;T;F;G)
        {}\mRightarrow{}  (loc(e){}\mrightarrow{}i)\mmember{}G  supposing  information-flow-relation(es;X;F;e;i))
Date html generated:
2016_05_16-PM-11_13_55
Last ObjectModification:
2015_12_29-AM-10_37_41
Theory : event-ordering
Home
Index