Step
*
2
1
1
of Lemma
primed-classrel
1. Info : Type
2. T : Type
3. X : EClass(T)
4. es : EO+(Info)
5. v : T
6. e : E
7. x : E@i
8. (x <loc e)@i
9. ↑0 <z #(X es x)@i
10. ∀e'':E. ((x <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑0 <z #(X es e'')))@i
11. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
            ∧ (↑((λe'.0 <z #(X es e')) e'))
            ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
  ∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
12. ↓∃e'<e.v ↓∈ X es e' ∧ ∀e''<e.∀w:T. (w ↓∈ X es e'' 
⇒ e'' ≤loc e' )@i
⊢ v ↓∈ X es x
BY
{ ((D (-1) THEN Unhide THEN Auto) THEN RepeatFor 3 (D -1)) }
1
1. Info : Type
2. T : Type
3. X : EClass(T)
4. es : EO+(Info)
5. v : T
6. e : E
7. x : E@i
8. (x <loc e)@i
9. ↑0 <z #(X es x)@i
10. ∀e'':E. ((x <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑0 <z #(X es e'')))@i
11. (last(λe'.0 <z #(X es e')) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
            ∧ (↑((λe'.0 <z #(X es e')) e'))
            ∧ (∀e'':E. ((e' <loc e'') 
⇒ (e'' <loc e) 
⇒ (¬↑((λe'.0 <z #(X es e')) e'')))))})
  ∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe'.0 <z #(X es e')) e')))})))@i
12. e' : E@i
13. (e' <loc e)@i
14. v ↓∈ X es e'@i
15. ∀e''<e.∀w:T. (w ↓∈ X es e'' 
⇒ e'' ≤loc e' )@i
⊢ v ↓∈ X es x
Latex:
Latex:
1.  Info  :  Type
2.  T  :  Type
3.  X  :  EClass(T)
4.  es  :  EO+(Info)
5.  v  :  T
6.  e  :  E
7.  x  :  E@i
8.  (x  <loc  e)@i
9.  \muparrow{}0  <z  \#(X  es  x)@i
10.  \mforall{}e'':E.  ((x  <loc  e'')  {}\mRightarrow{}  (e''  <loc  e)  {}\mRightarrow{}  (\mneg{}\muparrow{}0  <z  \#(X  es  e'')))@i
11.  (last(\mlambda{}e'.0  <z  \#(X  es  e'))  e)  =  (inl  x)@i
12.  \mdownarrow{}\mexists{}e'<e.v  \mdownarrow{}\mmember{}  X  es  e'  \mwedge{}  \mforall{}e''<e.\mforall{}w:T.  (w  \mdownarrow{}\mmember{}  X  es  e''  {}\mRightarrow{}  e''  \mleq{}loc  e'  )@i
\mvdash{}  v  \mdownarrow{}\mmember{}  X  es  x
By
Latex:
((D  (-1)  THEN  Unhide  THEN  Auto)  THEN  RepeatFor  3  (D  -1))
Home
Index