Nuprl Lemma : sys-antecedent-closure
∀[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀fs:sys-antecedent(es;X) List. ∀s:fset(E(X)).  ∃c:fset(E(X)). (c = fs closure of s)
Proof
Definitions occuring in Statement : 
sys-antecedent: sys-antecedent(es;Sys), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
es-eq: es-eq(es), 
fset-closure: (c = fs closure of s), 
fset: fset(T), 
list: T List, 
uall: ∀[x:A]. B[x], 
top: Top, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
member: t ∈ T, 
subtype_rel: A ⊆r B, 
strongwellfounded: SWellFounded(R[x; y]), 
exists: ∃x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
es-E-interface: E(X), 
sys-antecedent: sys-antecedent(es;Sys), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
prop: ℙ, 
implies: P ⇒ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
nat: ℕ, 
false: False, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
top: Top, 
or: P ∨ Q, 
cons: [a / b], 
colength: colength(L), 
guard: {T}, 
decidable: Dec(P), 
nil: [], 
it: ⋅, 
sq_type: SQType(T), 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
es-causle: e c≤ e', 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
true: True
Latex:
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}fs:sys-antecedent(es;X)  List.  \mforall{}s:fset(E(X)).
        \mexists{}c:fset(E(X)).  (c  =  fs  closure  of  s)
Date html generated:
2016_05_16-PM-02_49_10
Last ObjectModification:
2016_01_17-PM-07_28_40
Theory : event-ordering
Home
Index