Step
*
2
of Lemma
Memory-class-exists
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ 0 < #(init loc(e'))
⇒ (↓∃v:B. v ∈ Memory-class(f;init;X)(e')))
10. 0 < #(init loc(e))@i
11. ¬↑first(e)
⊢ ↓∃v:B. v ∈ Memory-class(f;init;X)(e)
BY
{ ((InstHyp [⌈pred(e)⌉] (-3)⋅ THENA MaAuto)
THEN SquashExRepD
THEN (Assert ⌈(#(X es pred(e)) = 0 ∈ ℤ) ∨ (#(X es pred(e)) > 0)⌉⋅ THENA Auto')
THEN D (-1)) }
1
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ 0 < #(init loc(e'))
⇒ (↓∃v:B. v ∈ Memory-class(f;init;X)(e')))
10. 0 < #(init loc(e))@i
11. ¬↑first(e)
12. v : B
13. v ∈ Memory-class(f;init;X)(pred(e))
14. #(X es pred(e)) = 0 ∈ ℤ
⊢ ↓∃v:B. v ∈ Memory-class(f;init;X)(e)
2
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ 0 < #(init loc(e'))
⇒ (↓∃v:B. v ∈ Memory-class(f;init;X)(e')))
10. 0 < #(init loc(e))@i
11. ¬↑first(e)
12. v : B
13. v ∈ Memory-class(f;init;X)(pred(e))
14. #(X es pred(e)) > 0
⊢ ↓∃v:B. v ∈ Memory-class(f;init;X)(e)
Latex:
Latex:
1. Info : Type
2. B : Type
3. A : Type
4. f : A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)
7. es : EO+(Info)
8. e : E@i
9. \mforall{}e':E. ((e' < e) {}\mRightarrow{} 0 < \#(init loc(e')) {}\mRightarrow{} (\mdownarrow{}\mexists{}v:B. v \mmember{} Memory-class(f;init;X)(e')))
10. 0 < \#(init loc(e))@i
11. \mneg{}\muparrow{}first(e)
\mvdash{} \mdownarrow{}\mexists{}v:B. v \mmember{} Memory-class(f;init;X)(e)
By
Latex:
((InstHyp [\mkleeneopen{}pred(e)\mkleeneclose{}] (-3)\mcdot{} THENA MaAuto)
THEN SquashExRepD
THEN (Assert \mkleeneopen{}(\#(X es pred(e)) = 0) \mvee{} (\#(X es pred(e)) > 0)\mkleeneclose{}\mcdot{} THENA Auto')
THEN D (-1))
Home
Index