Step
*
1
1
of Lemma
State-comb-classrel-class
.....truecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. v ↓∈ Prior(State-comb(init;f;X))?init es e@i
12. (X es e) = {} ∈ bag(A)
⊢ iterated_classrel(es;B;A;f;init;X;e;v)
BY
{ (Try (Fold `classrel` (-2)) THEN MaUseClassRel (-2) THEN TrySquashExRepD (-2) THEN D (-2) THEN ExRepD) }
1
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. e' : E
12. es-p-local-pred(es;λe'.(↓∃w:B. w ∈ State-comb(init;f;X)(e'))) e e'
13. v ∈ State-comb(init;f;X)(e')
14. (X es e) = {} ∈ bag(A)
⊢ iterated_classrel(es;B;A;f;init;X;e;v)
2
1. Info : Type
2. B : Type
3. A : Type
4. f : A ─→ B ─→ B
5. init : Id ─→ bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. ∀e':E. ((e' < e)
⇒ (∀v:B. (v ∈ State-comb(init;f;X)(e')
⇐⇒ v ∈ State-class(init;f;X)(e'))))
10. v : B@i
11. ∀e':E. ((e' <loc e)
⇒ (∀w:B. (¬w ∈ State-comb(init;f;X)(e'))))
12. v ↓∈ init loc(e)
13. (X es e) = {} ∈ bag(A)
⊢ iterated_classrel(es;B;A;f;init;X;e;v)
Latex:
Latex:
.....truecase.....
1. Info : Type
2. B : Type
3. A : Type
4. f : A {}\mrightarrow{} B {}\mrightarrow{} B
5. init : Id {}\mrightarrow{} bag(B)
6. X : EClass(A)@i'
7. es : EO+(Info)@i'
8. e : E@i
9. \mforall{}e':E. ((e' < e) {}\mRightarrow{} (\mforall{}v:B. (v \mmember{} State-comb(init;f;X)(e') \mLeftarrow{}{}\mRightarrow{} v \mmember{} State-class(init;f;X)(e'))))
10. v : B@i
11. v \mdownarrow{}\mmember{} Prior(State-comb(init;f;X))?init es e@i
12. (X es e) = \{\}
\mvdash{} iterated\_classrel(es;B;A;f;init;X;e;v)
By
Latex:
(Try (Fold `classrel` (-2))
THEN MaUseClassRel (-2)
THEN TrySquashExRepD (-2)
THEN D (-2)
THEN ExRepD)
Home
Index