Step
*
1
1
2
of Lemma
State-comb-es-sv
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. f : Top
5. X : EClass(A)
6. init : Id ─→ bag(Top)
7. es-sv-class(es;X)
8. ∀l:Id. (#(init l) ≤ 1)
9. e : E@i
10. ∀e1:E. ((e1 < e)
⇒ (#(State-comb(init;f;X) es e1) ≤ 1))
11. #(if bag-null(X es e)
then Prior(State-comb(init;f;X))?init es e
else lifting-2(f) (X es e) (Prior(State-comb(init;f;X))?init es e)
fi ) ≤ 1
⊢ #(State-comb(init;f;X) es e) ≤ 1
BY
{ (RepUR ``State-comb rec-combined-class-opt-1`` 0
THEN RepUR ``State-comb rec-combined-class-opt-1`` -1
THEN RecUnfold `rec-comb` 0
THEN Reduce 0
THEN Trivial) }
Latex:
Latex:
1. Info : Type
2. A : Type
3. es : EO+(Info)
4. f : Top
5. X : EClass(A)
6. init : Id {}\mrightarrow{} bag(Top)
7. es-sv-class(es;X)
8. \mforall{}l:Id. (\#(init l) \mleq{} 1)
9. e : E@i
10. \mforall{}e1:E. ((e1 < e) {}\mRightarrow{} (\#(State-comb(init;f;X) es e1) \mleq{} 1))
11. \#(if bag-null(X es e)
then Prior(State-comb(init;f;X))?init es e
else lifting-2(f) (X es e) (Prior(State-comb(init;f;X))?init es e)
fi ) \mleq{} 1
\mvdash{} \#(State-comb(init;f;X) es e) \mleq{} 1
By
Latex:
(RepUR ``State-comb rec-combined-class-opt-1`` 0
THEN RepUR ``State-comb rec-combined-class-opt-1`` -1
THEN RecUnfold `rec-comb` 0
THEN Reduce 0
THEN Trivial)
Home
Index