Step
*
of Lemma
State-comb-fun-eq2
∀[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
(State-comb(init;f;X)(e)
= if e ∈b X then if first(e) then f X@e sv-bag-only(init loc(e)) else f X@e State-comb(init;f;X)(pred(e)) fi
if first(e) then sv-bag-only(init loc(e))
else State-comb(init;f;X)(pred(e))
fi
∈ B) supposing
(single-valued-classrel(es;X;A) and
(∀l:Id. single-valued-bag(init l;B)) and
(∀l:Id. (1 ≤ #(init l))))
BY
{ (Auto THEN RepUR ``classfun-res`` 0 THEN BLemma `State-comb-fun-eq` THEN Auto) }
Latex:
Latex:
\mforall{}[Info,B,A:Type]. \mforall{}[f:A {}\mrightarrow{} B {}\mrightarrow{} B]. \mforall{}[init:Id {}\mrightarrow{} bag(B)]. \mforall{}[X:EClass(A)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E].
(State-comb(init;f;X)(e)
= if e \mmember{}\msubb{} X
then if first(e)
then f X@e sv-bag-only(init loc(e))
else f X@e State-comb(init;f;X)(pred(e))
fi
if first(e) then sv-bag-only(init loc(e))
else State-comb(init;f;X)(pred(e))
fi ) supposing
(single-valued-classrel(es;X;A) and
(\mforall{}l:Id. single-valued-bag(init l;B)) and
(\mforall{}l:Id. (1 \mleq{} \#(init l))))
By
Latex:
(Auto THEN RepUR ``classfun-res`` 0 THEN BLemma `State-comb-fun-eq` THEN Auto)
Home
Index