Step
*
of Lemma
State-comb-fun-eq2
∀[Info,B,A:Type]. ∀[f:A ─→ B ─→ B]. ∀[init:Id ─→ bag(B)]. ∀[X:EClass(A)]. ∀[es:EO+(Info)]. ∀[e:E].
  (State-comb(init;f;X)(e)
     = if e ∈b X then if first(e) then f X@e sv-bag-only(init loc(e)) else f X@e State-comb(init;f;X)(pred(e)) fi 
       if first(e) then sv-bag-only(init loc(e))
       else State-comb(init;f;X)(pred(e))
       fi 
     ∈ B) supposing 
     (single-valued-classrel(es;X;A) and 
     (∀l:Id. single-valued-bag(init l;B)) and 
     (∀l:Id. (1 ≤ #(init l))))
BY
{ (Auto THEN RepUR ``classfun-res`` 0 THEN BLemma `State-comb-fun-eq` THEN Auto) }
Latex:
Latex:
\mforall{}[Info,B,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  B].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[X:EClass(A)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (State-comb(init;f;X)(e)
          =  if  e  \mmember{}\msubb{}  X
                  then  if  first(e)
                            then  f  X@e  sv-bag-only(init  loc(e))
                            else  f  X@e  State-comb(init;f;X)(pred(e))
                            fi 
              if  first(e)  then  sv-bag-only(init  loc(e))
              else  State-comb(init;f;X)(pred(e))
              fi  )  supposing 
          (single-valued-classrel(es;X;A)  and 
          (\mforall{}l:Id.  single-valued-bag(init  l;B))  and 
          (\mforall{}l:Id.  (1  \mleq{}  \#(init  l))))
By
Latex:
(Auto  THEN  RepUR  ``classfun-res``  0  THEN  BLemma  `State-comb-fun-eq`  THEN  Auto)
Home
Index