Nuprl Lemma : concat-lifting-loc_wf

[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[bags:k:ℕn ─→ bag(A k)]. ∀[loc:Id]. ∀[f:Id ─→ funtype(n;A;bag(B))].
  (concat-lifting-loc(n;bags;loc;f) ∈ bag(B))


Proof




Definitions occuring in Statement :  concat-lifting-loc: concat-lifting-loc(n;bags;loc;f) Id: Id int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T apply: a function: x:A ─→ B[x] natural_number: $n universe: Type bag: bag(T) funtype: funtype(n;A;T)
Lemmas :  concat-lifting_wf Id_wf funtype_wf bag_wf int_seg_wf nat_wf

Latex:
\mforall{}[B:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[bags:k:\mBbbN{}n  {}\mrightarrow{}  bag(A  k)].  \mforall{}[loc:Id].
\mforall{}[f:Id  {}\mrightarrow{}  funtype(n;A;bag(B))].
    (concat-lifting-loc(n;bags;loc;f)  \mmember{}  bag(B))



Date html generated: 2015_07_22-PM-00_08_00
Last ObjectModification: 2015_01_28-AM-11_42_04

Home Index