Nuprl Lemma : concat-lifting-loc_wf
∀[B:Type]. ∀[n:ℕ]. ∀[A:ℕn ─→ Type]. ∀[bags:k:ℕn ─→ bag(A k)]. ∀[loc:Id]. ∀[f:Id ─→ funtype(n;A;bag(B))].
(concat-lifting-loc(n;bags;loc;f) ∈ bag(B))
Proof
Definitions occuring in Statement :
concat-lifting-loc: concat-lifting-loc(n;bags;loc;f)
,
Id: Id
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
apply: f a
,
function: x:A ─→ B[x]
,
natural_number: $n
,
universe: Type
,
bag: bag(T)
,
funtype: funtype(n;A;T)
Lemmas :
concat-lifting_wf,
Id_wf,
funtype_wf,
bag_wf,
int_seg_wf,
nat_wf
Latex:
\mforall{}[B:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[A:\mBbbN{}n {}\mrightarrow{} Type]. \mforall{}[bags:k:\mBbbN{}n {}\mrightarrow{} bag(A k)]. \mforall{}[loc:Id].
\mforall{}[f:Id {}\mrightarrow{} funtype(n;A;bag(B))].
(concat-lifting-loc(n;bags;loc;f) \mmember{} bag(B))
Date html generated:
2015_07_22-PM-00_08_00
Last ObjectModification:
2015_01_28-AM-11_42_04
Home
Index