Nuprl Lemma : bag_wf

[T:Type]. (bag(T) ∈ Type)


Proof




Definitions occuring in Statement :  bag: bag(T) uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a
Lemmas referenced :  quotient_wf list_wf permutation_wf permutation-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis lambdaEquality because_Cache independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry universeEquality

Latex:
\mforall{}[T:Type].  (bag(T)  \mmember{}  Type)



Date html generated: 2016_05_15-PM-02_21_25
Last ObjectModification: 2015_12_27-AM-09_55_28

Theory : bags


Home Index