Nuprl Lemma : permutation-equiv

[A:Type]. EquivRel(A List)(permutation(A;_1;_2))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) list: List equiv_rel: EquivRel(T;x,y.E[x; y]) uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] equiv_rel: EquivRel(T;x,y.E[x; y]) and: P ∧ Q refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] member: t ∈ T sym: Sym(T;x,y.E[x; y]) implies:  Q prop: trans: Trans(T;x,y.E[x; y]) uimplies: supposing a
Lemmas referenced :  list_wf permutation_inversion permutation_wf permutation_transitivity permutation_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache dependent_functionElimination independent_functionElimination universeEquality independent_isectElimination

Latex:
\mforall{}[A:Type].  EquivRel(A  List)(permutation(A;$_{1}$;$_{2}$))



Date html generated: 2016_05_14-PM-02_19_24
Last ObjectModification: 2015_12_26-PM-04_28_31

Theory : list_1


Home Index