Nuprl Lemma : permutation-equiv
∀[A:Type]. EquivRel(A List)(permutation(A;_1;_2))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
and: P ∧ Q
, 
refl: Refl(T;x,y.E[x; y])
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
sym: Sym(T;x,y.E[x; y])
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
trans: Trans(T;x,y.E[x; y])
, 
uimplies: b supposing a
Lemmas referenced : 
list_wf, 
permutation_inversion, 
permutation_wf, 
permutation_transitivity, 
permutation_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
dependent_functionElimination, 
independent_functionElimination, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A:Type].  EquivRel(A  List)(permutation(A;$_{1}$;$_{2}$))
Date html generated:
2016_05_14-PM-02_19_24
Last ObjectModification:
2015_12_26-PM-04_28_31
Theory : list_1
Home
Index