Nuprl Lemma : permutation_weakening
∀[A:Type]. ∀as,bs:A List.  permutation(A;as;bs) supposing as = bs ∈ (A List)
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
permutation: permutation(T;L1;L2)
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
int_seg_wf, 
length_wf, 
identity-injection, 
equal_wf, 
squash_wf, 
true_wf, 
list_wf, 
permute_list_wf, 
iff_weakening_equal, 
permute_list-identity, 
inject_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
dependent_pairFormation, 
lambdaEquality, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
cumulativity, 
independent_pairFormation, 
equalitySymmetry, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
because_Cache, 
functionEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
productEquality, 
functionExtensionality
Latex:
\mforall{}[A:Type].  \mforall{}as,bs:A  List.    permutation(A;as;bs)  supposing  as  =  bs
Date html generated:
2017_04_17-AM-08_10_58
Last ObjectModification:
2017_02_27-PM-04_37_21
Theory : list_1
Home
Index