Nuprl Lemma : permute_list_wf

[T:Type]. ∀[L:T List]. ∀[f:ℕ||L|| ⟶ ℕ||L||].  ((L f) ∈ List)


Proof




Definitions occuring in Statement :  permute_list: (L f) length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  permute_list: (L f) uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] prop: decidable: Dec(P) or: P ∨ Q nat: satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top
Lemmas referenced :  list_wf int_seg_wf int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_formula_prop_not_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_and_lemma intformnot_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf satisfiable-full-omega-tt le_wf nat_properties lelt_wf decidable__le length_wf int_seg_properties non_neg_length select_wf length_wf_nat mklist_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis lambdaEquality applyEquality independent_isectElimination natural_numberEquality setElimination rename productElimination dependent_functionElimination dependent_set_memberEquality independent_pairFormation unionElimination equalityTransitivity equalitySymmetry setEquality intEquality dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll axiomEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||].    ((L  o  f)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-02_16_54
Last ObjectModification: 2016_01_15-AM-07_56_36

Theory : list_1


Home Index