Nuprl Definition : permutation

permutation(T;L1;L2) ==  ∃f:ℕ||L1|| ⟶ ℕ||L1||. (Inj(ℕ||L1||;ℕ||L1||;f) ∧ (L2 (L1 f) ∈ (T List)))



Definitions occuring in Statement :  permute_list: (L f) length: ||as|| list: List inject: Inj(A;B;f) int_seg: {i..j-} exists: x:A. B[x] and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions occuring in definition :  exists: x:A. B[x] function: x:A ⟶ B[x] and: P ∧ Q inject: Inj(A;B;f) int_seg: {i..j-} natural_number: $n length: ||as|| equal: t ∈ T list: List permute_list: (L f)
FDL editor aliases :  permutation

Latex:
permutation(T;L1;L2)  ==    \mexists{}f:\mBbbN{}||L1||  {}\mrightarrow{}  \mBbbN{}||L1||.  (Inj(\mBbbN{}||L1||;\mBbbN{}||L1||;f)  \mwedge{}  (L2  =  (L1  o  f)))



Date html generated: 2016_05_14-PM-02_17_40
Last ObjectModification: 2016_01_05-PM-00_20_22

Theory : list_1


Home Index