Nuprl Lemma : permutation_inversion

[A:Type]. ∀as,bs:A List.  (permutation(A;as;bs)  permutation(A;bs;as))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  permutation: permutation(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T top: Top prop: squash: T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q surject: Surj(A;B;f) int_seg: {i..j-} pi1: fst(t) cand: c∧ B inject: Inj(A;B;f) lelt: i ≤ j < k nat: ge: i ≥  compose: g
Lemmas referenced :  permute_list_length equal_wf length_wf squash_wf true_wf permute_permute_list subtype_rel_dep_function int_seg_wf permute_list_wf int_seg_subtype false_wf decidable__le satisfiable-full-omega-tt intformnot_wf intformle_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_wf iff_weakening_equal inject_wf exists_wf compose_wf subtype_rel_self list_wf injection-is-surjection length_wf_nat all_wf int_seg_properties intformand_wf itermConstant_wf intformeq_wf int_formula_prop_and_lemma int_term_value_constant_lemma int_formula_prop_eq_lemma decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf list_extensionality less_than_wf nat_wf select_wf nat_properties permute_list_select
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis introduction extract_by_obid isectElimination hypothesisEquality isect_memberEquality voidElimination voidEquality because_Cache hyp_replacement equalitySymmetry applyLambdaEquality intEquality cumulativity addLevel existsFunctionality independent_pairFormation applyEquality lambdaEquality imageElimination equalityTransitivity equalityUniverse levelHypothesis natural_numberEquality functionExtensionality independent_isectElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality computeAll imageMemberEquality baseClosed universeEquality independent_functionElimination productEquality functionEquality promote_hyp setElimination rename dependent_set_memberEquality instantiate

Latex:
\mforall{}[A:Type].  \mforall{}as,bs:A  List.    (permutation(A;as;bs)  {}\mRightarrow{}  permutation(A;bs;as))



Date html generated: 2017_04_17-AM-08_11_25
Last ObjectModification: 2017_02_27-PM-04_38_09

Theory : list_1


Home Index