Nuprl Lemma : permute_list_length
∀[T:Type]. ∀[L:T List]. ∀[f:Top].  (||(L o f)|| ~ ||L||)
Proof
Definitions occuring in Statement : 
permute_list: (L o f)
, 
length: ||as||
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
permute_list: (L o f)
, 
top: Top
Lemmas referenced : 
mklist_length, 
length_wf_nat, 
top_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesisEquality, 
hypothesis, 
sqequalAxiom, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:Top].    (||(L  o  f)||  \msim{}  ||L||)
Date html generated:
2016_05_14-PM-02_17_11
Last ObjectModification:
2015_12_26-PM-04_31_01
Theory : list_1
Home
Index