Nuprl Lemma : permute_list_length

[T:Type]. ∀[L:T List]. ∀[f:Top].  (||(L f)|| ||L||)


Proof




Definitions occuring in Statement :  permute_list: (L f) length: ||as|| list: List uall: [x:A]. B[x] top: Top universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T permute_list: (L f) top: Top
Lemmas referenced :  mklist_length length_wf_nat top_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesisEquality hypothesis sqequalAxiom because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:Top].    (||(L  o  f)||  \msim{}  ||L||)



Date html generated: 2016_05_14-PM-02_17_11
Last ObjectModification: 2015_12_26-PM-04_31_01

Theory : list_1


Home Index