Nuprl Lemma : permute_permute_list
∀[T:Type]. ∀[L:T List]. ∀[f,g:ℕ||L|| ⟶ ℕ||L||].  (((L o f) o g) = (L o f o g) ∈ (T List))
Proof
Definitions occuring in Statement : 
permute_list: (L o f)
, 
length: ||as||
, 
list: T List
, 
compose: f o g
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
list_wf, 
permute_list_wf, 
int_seg_wf, 
length_wf, 
subtype_rel_dep_function, 
int_seg_subtype, 
false_wf, 
permute_list_length, 
le_reflexive, 
permute_list-compose, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeEquality, 
cumulativity, 
because_Cache, 
functionExtensionality, 
natural_numberEquality, 
sqequalRule, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
functionEquality, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f,g:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||].    (((L  o  f)  o  g)  =  (L  o  f  o  g))
Date html generated:
2017_04_17-AM-08_10_10
Last ObjectModification:
2017_02_27-PM-04_37_43
Theory : list_1
Home
Index