Nuprl Lemma : permute_permute_list

[T:Type]. ∀[L:T List]. ∀[f,g:ℕ||L|| ⟶ ℕ||L||].  (((L f) g) (L g) ∈ (T List))


Proof




Definitions occuring in Statement :  permute_list: (L f) length: ||as|| list: List compose: g int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q all: x:A. B[x] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  equal_wf squash_wf true_wf list_wf permute_list_wf int_seg_wf length_wf subtype_rel_dep_function int_seg_subtype false_wf permute_list_length le_reflexive permute_list-compose iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeEquality cumulativity because_Cache functionExtensionality natural_numberEquality sqequalRule independent_isectElimination independent_pairFormation lambdaFormation dependent_functionElimination imageMemberEquality baseClosed productElimination independent_functionElimination functionEquality isect_memberEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f,g:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||].    (((L  o  f)  o  g)  =  (L  o  f  o  g))



Date html generated: 2017_04_17-AM-08_10_10
Last ObjectModification: 2017_02_27-PM-04_37_43

Theory : list_1


Home Index