Nuprl Lemma : permute_list-compose
∀[T:Type]. ∀[L:T List]. ∀[f,g:ℕ||L|| ⟶ ℕ||L||]. ((L o f o g) = ((L o f) o g) ∈ (T List))
Proof
Definitions occuring in Statement :
permute_list: (L o f)
,
length: ||as||
,
list: T List
,
compose: f o g
,
int_seg: {i..j-}
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
subtype_rel: A ⊆r B
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
uimplies: b supposing a
,
and: P ∧ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
false: False
,
not: ¬A
,
implies: P
⇒ Q
,
prop: ℙ
,
top: Top
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
nat: ℕ
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
true: True
,
compose: f o g
,
ge: i ≥ j
,
guard: {T}
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
list_extensionality,
permute_list_wf,
compose_wf,
int_seg_wf,
length_wf,
subtype_rel_dep_function,
int_seg_subtype,
false_wf,
permute_list_length,
decidable__le,
satisfiable-full-omega-tt,
intformnot_wf,
intformle_wf,
itermVar_wf,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
less_than_wf,
nat_wf,
lelt_wf,
select_wf,
non_neg_length,
nat_properties,
length_wf_nat,
int_seg_properties,
intformand_wf,
itermConstant_wf,
int_formula_prop_and_lemma,
int_term_value_constant_lemma,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
equal_wf,
squash_wf,
true_wf,
permute_list_select,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
cumulativity,
natural_numberEquality,
hypothesis,
functionExtensionality,
applyEquality,
because_Cache,
sqequalRule,
lambdaEquality,
independent_isectElimination,
independent_pairFormation,
lambdaFormation,
isect_memberEquality,
voidElimination,
voidEquality,
dependent_functionElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
computeAll,
setElimination,
rename,
axiomEquality,
dependent_set_memberEquality,
productElimination,
equalityTransitivity,
equalitySymmetry,
applyLambdaEquality,
independent_functionElimination,
imageElimination,
imageMemberEquality,
baseClosed,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[L:T List]. \mforall{}[f,g:\mBbbN{}||L|| {}\mrightarrow{} \mBbbN{}||L||]. ((L o f o g) = ((L o f) o g))
Date html generated:
2017_04_17-AM-08_09_59
Last ObjectModification:
2017_02_27-PM-04_38_00
Theory : list_1
Home
Index