Nuprl Lemma : injection-is-surjection

n:ℕ. ∀f:ℕn ⟶ ℕn.  Surj(ℕn;ℕn;f) supposing Inj(ℕn;ℕn;f)


Proof




Definitions occuring in Statement :  surject: Surj(A;B;f) inject: Inj(A;B;f) int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T inject: Inj(A;B;f) implies:  Q nat: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q prop: sq_type: SQType(T) guard: {T} surject: Surj(A;B;f) int_seg: {i..j-} ge: i ≥  exists: x:A. B[x] lelt: i ≤ j < k and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  le: A ≤ B less_than': less_than'(a;b) nequal: a ≠ b ∈  int_upper: {i...} bfalse: ff bnot: ¬bb assert: b rev_implies:  Q iff: ⇐⇒ Q less_than: a < b squash: T true: True
Lemmas referenced :  decidable__exists_int_seg all_wf int_seg_wf not_wf equal-wf-T-base decidable__all_int_seg decidable__not decidable__equal_int_seg inject_wf nat_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties nat_properties full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf injection_le subtract_wf decidable__le intformnot_wf itermSubtract_wf intformeq_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_formula_prop_eq_lemma le_wf lt_int_wf eqtt_to_assert assert_of_lt_int upper_subtype_nat istype-false nequal-le-implies zero-add zero-le-nat int_seg_subtype_nat int_upper_properties decidable__lt less_than_wf eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf equal-wf-base set_subtype_base lelt_wf bnot_wf bool_cases iff_transitivity assert_of_bnot iff_imp_equal_bool btrue_wf iff_functionality_wrt_iff true_wf iff_weakening_equal subtract-is-int-iff false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  cut introduction sqequalRule sqequalHypSubstitution Error :lambdaEquality_alt,  dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis Error :functionIsTypeImplies,  Error :inhabitedIsType,  rename instantiate extract_by_obid natural_numberEquality setElimination because_Cache isectElimination Error :universeIsType,  independent_functionElimination applyEquality unionElimination Error :functionIsType,  cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry productElimination approximateComputation Error :dependent_pairFormation_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :dependent_set_memberEquality_alt,  equalityElimination hypothesis_subsumption Error :productIsType,  Error :equalityIsType1,  promote_hyp Error :equalityIsType4,  baseApply closedConclusion baseClosed applyLambdaEquality imageElimination pointwiseFunctionality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n.    Surj(\mBbbN{}n;\mBbbN{}n;f)  supposing  Inj(\mBbbN{}n;\mBbbN{}n;f)



Date html generated: 2019_06_20-PM-01_15_40
Last ObjectModification: 2018_10_07-PM-00_32_35

Theory : int_2


Home Index