Nuprl Lemma : upper_subtype_nat

[m:ℤ]. {m...} ⊆r ℕ supposing 0 ≤ m


Proof




Definitions occuring in Statement :  int_upper: {i...} nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B natural_number: $n int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: prop: subtype_rel: A ⊆B
Lemmas referenced :  int_upper_subtype_nat le_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality hypothesisEquality hypothesis natural_numberEquality sqequalRule axiomEquality isect_memberEquality because_Cache equalityTransitivity equalitySymmetry intEquality

Latex:
\mforall{}[m:\mBbbZ{}].  \{m...\}  \msubseteq{}r  \mBbbN{}  supposing  0  \mleq{}  m



Date html generated: 2018_05_21-PM-00_03_59
Last ObjectModification: 2018_05_19-AM-07_10_37

Theory : int_1


Home Index