Nuprl Lemma : int_upper_subtype_nat
∀[n:ℕ]. ({n...} ⊆r ℕ)
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
int_upper: {i...}
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
le: A ≤ B
, 
and: P ∧ Q
, 
sq_stable: SqStable(P)
, 
guard: {T}
, 
squash: ↓T
Lemmas referenced : 
nat_wf, 
le_transitivity, 
decidable__le, 
sq_stable_from_decidable, 
le_wf, 
subtype_rel_sets
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
because_Cache, 
lambdaEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
independent_isectElimination, 
setEquality, 
lambdaFormation, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
axiomEquality
Latex:
\mforall{}[n:\mBbbN{}].  (\{n...\}  \msubseteq{}r  \mBbbN{})
Date html generated:
2016_05_13-PM-03_33_00
Last ObjectModification:
2016_01_14-PM-06_40_56
Theory : arithmetic
Home
Index