Nuprl Lemma : int_upper_subtype_nat

[n:ℕ]. ({n...} ⊆r ℕ)


Proof




Definitions occuring in Statement :  int_upper: {i...} nat: subtype_rel: A ⊆B uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int_upper: {i...} nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a subtype_rel: A ⊆B prop: all: x:A. B[x] implies:  Q le: A ≤ B and: P ∧ Q sq_stable: SqStable(P) guard: {T} squash: T
Lemmas referenced :  nat_wf le_transitivity decidable__le sq_stable_from_decidable le_wf subtype_rel_sets
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin intEquality because_Cache lambdaEquality setElimination rename hypothesisEquality hypothesis natural_numberEquality independent_isectElimination setEquality lambdaFormation productElimination independent_functionElimination dependent_functionElimination imageMemberEquality baseClosed imageElimination axiomEquality

Latex:
\mforall{}[n:\mBbbN{}].  (\{n...\}  \msubseteq{}r  \mBbbN{})



Date html generated: 2016_05_13-PM-03_33_00
Last ObjectModification: 2016_01_14-PM-06_40_56

Theory : arithmetic


Home Index