Nuprl Lemma : zero-le-nat
∀[i:ℕ]. (0 ≤ i)
Proof
Definitions occuring in Statement : 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
prop: ℙ
Lemmas referenced : 
nat_wf, 
less_than'_wf, 
decidable__le, 
le_wf, 
sq_stable_from_decidable
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
independent_pairEquality, 
lambdaEquality, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[i:\mBbbN{}].  (0  \mleq{}  i)
Date html generated:
2016_05_13-PM-03_32_06
Last ObjectModification:
2016_01_14-PM-06_40_54
Theory : arithmetic
Home
Index