Nuprl Lemma : permutation_wf

[A:Type]. ∀[L1,L2:A List].  (permutation(A;L1;L2) ∈ ℙ)


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  permutation: permutation(T;L1;L2) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  exists_wf int_seg_wf length_wf and_wf inject_wf equal_wf list_wf permute_list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin functionEquality natural_numberEquality hypothesisEquality hypothesis lambdaEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L1,L2:A  List].    (permutation(A;L1;L2)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_14-PM-02_17_47
Last ObjectModification: 2015_12_26-PM-04_30_29

Theory : list_1


Home Index