Step
*
of Lemma
lifting-loc-3_wf
∀[A,B,C,D:Type]. ∀[f:Id ─→ A ─→ B ─→ C ─→ D].  (lifting-loc-3(f) ∈ Id ─→ bag(A) ─→ bag(B) ─→ bag(C) ─→ bag(D))
BY
{ (ProveWfLemma
   THEN InstLemma `lifting-loc-gen-rev_wf` [⌈D⌉; ⌈3⌉; ⌈λn.[A; B; C][n]⌉; ⌈λn.[a; b; c][n]⌉; ⌈l⌉; ⌈f⌉]⋅
   THEN Try (Complete ((Auto THEN Auto')))) }
1
.....wf..... 
1. A : Type
2. B : Type
3. C : Type
4. D : Type
5. f : Id ─→ A ─→ B ─→ C ─→ D
6. l : Id@i
7. a : bag(A)@i
8. b : bag(B)@i
9. c : bag(C)@i
⊢ f ∈ Id ─→ funtype(3;λn.[A; B; C][n];D)
Latex:
Latex:
\mforall{}[A,B,C,D:Type].  \mforall{}[f:Id  {}\mrightarrow{}  A  {}\mrightarrow{}  B  {}\mrightarrow{}  C  {}\mrightarrow{}  D].
    (lifting-loc-3(f)  \mmember{}  Id  {}\mrightarrow{}  bag(A)  {}\mrightarrow{}  bag(B)  {}\mrightarrow{}  bag(C)  {}\mrightarrow{}  bag(D))
By
Latex:
(ProveWfLemma
  THEN  InstLemma  `lifting-loc-gen-rev\_wf`  [\mkleeneopen{}D\mkleeneclose{};  \mkleeneopen{}3\mkleeneclose{};  \mkleeneopen{}\mlambda{}n.[A;  B;  C][n]\mkleeneclose{};  \mkleeneopen{}\mlambda{}n.[a;  b;  c][n]\mkleeneclose{};  \mkleeneopen{}l\mkleeneclose{};  \mkleeneopen{}f\mkleeneclose{}]\mcdot{}
  THEN  Try  (Complete  ((Auto  THEN  Auto'))))
Home
Index