Step
*
3
of Lemma
rec-combined-class-opt-1-single-val0
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. F : A ─→ B ─→ B
6. X : EClass(A)
7. init : Id ─→ bag(B)
8. e : E@i
9. ∀e':E
((e' < e)
⇒ (∀v1,v2:B.
(single-valued-bag(init loc(e');B)
⇒ single-valued-classrel(es;X;A)
⇒ v2 ∈ lifting-2(F)|X,Prior(self)?init|(e')
⇒ v1 ∈ lifting-2(F)|X,Prior(self)?init|(e')
⇒ (v1 = v2 ∈ B))))
10. v1 : B@i
11. v2 : B@i
12. single-valued-bag(init loc(e);B)@i
13. single-valued-classrel(es;X;A)@i
14. a : A
15. b : B
16. v2 = (F a b) ∈ B
17. ∀e':E. ((e' <loc e)
⇒ (∀w:B. (¬w ∈ lifting-2(F)|X,Prior(self)?init|(e'))))
18. b ↓∈ init loc(e)
19. a ∈ X(e)
20. a1 : A
21. b1 : B
22. v1 = (F a1 b1) ∈ B
23. e' : E
24. es-p-local-pred(es;λe'.(↓∃w:B. w ∈ lifting-2(F)|X,Prior(self)?init|(e'))) e e'
25. b1 ∈ lifting-2(F)|X,Prior(self)?init|(e')
26. a1 ∈ X(e)
27. a = a1 ∈ A
⊢ b1 = b ∈ B
BY
{ ((Assert ⌈False⌉⋅ THEN Auto)
THEN All (RepUR ``es-p-local-pred``)
THEN RepD
THEN InstHyp [⌈e'⌉;⌈b1⌉] (-13)⋅
THEN MaAuto) }
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. es : EO+(Info)
5. F : A {}\mrightarrow{} B {}\mrightarrow{} B
6. X : EClass(A)
7. init : Id {}\mrightarrow{} bag(B)
8. e : E@i
9. \mforall{}e':E
((e' < e)
{}\mRightarrow{} (\mforall{}v1,v2:B.
(single-valued-bag(init loc(e');B)
{}\mRightarrow{} single-valued-classrel(es;X;A)
{}\mRightarrow{} v2 \mmember{} lifting-2(F)|X,Prior(self)?init|(e')
{}\mRightarrow{} v1 \mmember{} lifting-2(F)|X,Prior(self)?init|(e')
{}\mRightarrow{} (v1 = v2))))
10. v1 : B@i
11. v2 : B@i
12. single-valued-bag(init loc(e);B)@i
13. single-valued-classrel(es;X;A)@i
14. a : A
15. b : B
16. v2 = (F a b)
17. \mforall{}e':E. ((e' <loc e) {}\mRightarrow{} (\mforall{}w:B. (\mneg{}w \mmember{} lifting-2(F)|X,Prior(self)?init|(e'))))
18. b \mdownarrow{}\mmember{} init loc(e)
19. a \mmember{} X(e)
20. a1 : A
21. b1 : B
22. v1 = (F a1 b1)
23. e' : E
24. es-p-local-pred(es;\mlambda{}e'.(\mdownarrow{}\mexists{}w:B. w \mmember{} lifting-2(F)|X,Prior(self)?init|(e'))) e e'
25. b1 \mmember{} lifting-2(F)|X,Prior(self)?init|(e')
26. a1 \mmember{} X(e)
27. a = a1
\mvdash{} b1 = b
By
Latex:
((Assert \mkleeneopen{}False\mkleeneclose{}\mcdot{} THEN Auto)
THEN All (RepUR ``es-p-local-pred``)
THEN RepD
THEN InstHyp [\mkleeneopen{}e'\mkleeneclose{};\mkleeneopen{}b1\mkleeneclose{}] (-13)\mcdot{}
THEN MaAuto)
Home
Index