Step
*
of Lemma
simple-comb-1-concat-classrel
∀[Info,B,C:Type]. ∀[f:B ─→ bag(C)]. ∀[X:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
uiff(v ∈ f@|X|(e);↓∃b:B. (v ↓∈ f b ∧ b ∈ X(e)))
BY
{ (Unfold `concat-lifting-1` 0
THEN Unfold `simple-comb-1` 0
THEN Reduce 0
THEN (UnivCD THENA Auto)
THEN (InstLemma `simple-comb1-concat-classrel` [⌈Info⌉; ⌈B⌉; ⌈C⌉; ⌈f⌉; ⌈X⌉; ⌈es⌉; ⌈e⌉; ⌈v⌉]⋅ THENA Auto)
THEN Unfold `simple-comb1` (-1)
THEN Auto
THEN Try ((Using [`n',⌈1⌉;`A',⌈λn.[B][n]⌉] MemCD⋅ THEN MaAuto))
THEN OnMaybeHyp 9 (\h. ((D h THEN Auto) THEN D 0 THEN ParallelLast THEN Auto))) }
Latex:
Latex:
\mforall{}[Info,B,C:Type]. \mforall{}[f:B {}\mrightarrow{} bag(C)]. \mforall{}[X:EClass(B)]. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:C].
uiff(v \mmember{} f@|X|(e);\mdownarrow{}\mexists{}b:B. (v \mdownarrow{}\mmember{} f b \mwedge{} b \mmember{} X(e)))
By
Latex:
(Unfold `concat-lifting-1` 0
THEN Unfold `simple-comb-1` 0
THEN Reduce 0
THEN (UnivCD THENA Auto)
THEN (InstLemma `simple-comb1-concat-classrel` [\mkleeneopen{}Info\mkleeneclose{}; \mkleeneopen{}B\mkleeneclose{}; \mkleeneopen{}C\mkleeneclose{}; \mkleeneopen{}f\mkleeneclose{}; \mkleeneopen{}X\mkleeneclose{}; \mkleeneopen{}es\mkleeneclose{}; \mkleeneopen{}e\mkleeneclose{}; \mkleeneopen{}v\mkleeneclose{}]\mcdot{}
THENA Auto
)
THEN Unfold `simple-comb1` (-1)
THEN Auto
THEN Try ((Using [`n',\mkleeneopen{}1\mkleeneclose{};`A',\mkleeneopen{}\mlambda{}n.[B][n]\mkleeneclose{}] MemCD\mcdot{} THEN MaAuto))
THEN OnMaybeHyp 9 (\mbackslash{}h. ((D h THEN Auto) THEN D 0 THEN ParallelLast THEN Auto)))
Home
Index