Step
*
2
1
of Lemma
simple-comb2-concat-classrel
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : A ─→ B ─→ bag(C)
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
uiff(v ∈ simple-comb(λw.concat-lifting2(f;w 0;w 1);λn.[X; Y][n])(e);↓∃vs:k:ℕ2 ─→ [A; B][k]
((∀k:ℕ2. vs[k] ∈ λn.[X; Y][n][k](e))
∧ v ↓∈ f (vs 0) (vs 1)))
12. uiff(v ∈ simple-comb(λw.concat-lifting2(f;w 0;w 1);λn.[X; Y][n])(e);↓∃vs:k:ℕ2 ─→ [A; B][k]
((∀k:ℕ2. vs[k] ∈ λn.[X; Y][n][k](e))
∧ v ↓∈ f (vs 0) (vs 1)))
13. v ∈ simple-comb(λw.concat-lifting2(f;w 0;w 1);λz.[X; Y][z])(e)
⊢ ↓∃a:A. ∃b:B. (a ∈ X(e) ∧ b ∈ Y(e) ∧ v ↓∈ f a b)
BY
{ (D (-2)
THEN (D (-3) THENA Auto)
THEN RepeatFor 3 (D (-1))
THEN D 0
THEN (InstConcl [⌈vs 0⌉;⌈vs 1⌉]⋅ THENA Auto')
THEN RepUR ``so_apply`` (-2)
THEN D 0
THEN ((InstHyp [⌈0⌉] (-2)⋅ THENA Auto) THEN Reduce (-1) THEN Auto)
THEN ((InstHyp [⌈1⌉] (-3)⋅ THENA Auto) THEN Reduce (-1) THEN Auto)⋅) }
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : A {}\mrightarrow{} B {}\mrightarrow{} bag(C)
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:C].
uiff(v \mmember{} simple-comb(\mlambda{}w.concat-lifting2(f;w 0;w 1);\mlambda{}n.[X; Y][n])(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}2 {}\mrightarrow{} [A; B][k]
((\mforall{}k:\mBbbN{}2
vs[k] \mmember{}
\mlambda{}n.[X; Y][n][k](e))
\mwedge{} v \mdownarrow{}\mmember{} f (vs 0) (vs 1)))
12. uiff(v \mmember{} simple-comb(\mlambda{}w.concat-lifting2(f;w 0;w 1);\mlambda{}n.[X; Y][n])(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}2 {}\mrightarrow{} [A; B][k]
((\mforall{}k:\mBbbN{}2
vs[k] \mmember{}
\mlambda{}n.[X; Y][n][k](e))
\mwedge{} v \mdownarrow{}\mmember{} f (vs 0) (vs 1)))
13. v \mmember{} simple-comb(\mlambda{}w.concat-lifting2(f;w 0;w 1);\mlambda{}z.[X; Y][z])(e)
\mvdash{} \mdownarrow{}\mexists{}a:A. \mexists{}b:B. (a \mmember{} X(e) \mwedge{} b \mmember{} Y(e) \mwedge{} v \mdownarrow{}\mmember{} f a b)
By
Latex:
(D (-2)
THEN (D (-3) THENA Auto)
THEN RepeatFor 3 (D (-1))
THEN D 0
THEN (InstConcl [\mkleeneopen{}vs 0\mkleeneclose{};\mkleeneopen{}vs 1\mkleeneclose{}]\mcdot{} THENA Auto')
THEN RepUR ``so\_apply`` (-2)
THEN D 0
THEN ((InstHyp [\mkleeneopen{}0\mkleeneclose{}] (-2)\mcdot{} THENA Auto) THEN Reduce (-1) THEN Auto)
THEN ((InstHyp [\mkleeneopen{}1\mkleeneclose{}] (-3)\mcdot{} THENA Auto) THEN Reduce (-1) THEN Auto)\mcdot{})
Home
Index