Step
*
2
of Lemma
simple-loc-comb-2-concat-es-sv
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. B : Type
5. F : Id ─→ A ─→ B ─→ bag(Top)
6. X : EClass(A)
7. Y : EClass(B)
8. ∀i:Id. ∀a:A. ∀b:B. (#(F i a b) ≤ 1)
9. ∀e:E. (#(X es e) ≤ 1)
10. es-sv-class(es;Y)
11. e : E@i
12. #(X es e) ≤ 1
13. #(X es e) = 1 ∈ ℤ
⊢ #(bag-union(∪x∈X es e.∪x@0∈Y es e.{F loc(e) x x@0})) ≤ 1
BY
{ ((Assert single-valued-bag(X es e;A) BY
(BLemma `single-valued-bag-if-le1` THEN Auto))
THEN (FLemma `bag-size-one` [-2] THENA Auto)
THEN HypSubst' (-1) 0
THEN (RWO "bag-combine-single-left" 0 THENA Auto)
THEN Unfold `es-sv-class` (-6)
THEN (InstHyp [⌈e⌉] (-6)⋅ THENA Auto)
THEN (Assert ⌈(#(Y es e) = 0 ∈ ℤ) ∨ (#(Y es e) = 1 ∈ ℤ)⌉⋅ THENA Auto')
THEN D (-1)) }
1
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. B : Type
5. F : Id ─→ A ─→ B ─→ bag(Top)
6. X : EClass(A)
7. Y : EClass(B)
8. ∀i:Id. ∀a:A. ∀b:B. (#(F i a b) ≤ 1)
9. ∀e:E. (#(X es e) ≤ 1)
10. ∀e:E. (#(Y es e) ≤ 1)
11. e : E@i
12. #(X es e) ≤ 1
13. #(X es e) = 1 ∈ ℤ
14. single-valued-bag(X es e;A)
15. X es e ~ {only(X es e)}
16. #(Y es e) ≤ 1
17. #(Y es e) = 0 ∈ ℤ
⊢ #(bag-union(∪x@0∈Y es e.{F loc(e) only(X es e) x@0})) ≤ 1
2
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. B : Type
5. F : Id ─→ A ─→ B ─→ bag(Top)
6. X : EClass(A)
7. Y : EClass(B)
8. ∀i:Id. ∀a:A. ∀b:B. (#(F i a b) ≤ 1)
9. ∀e:E. (#(X es e) ≤ 1)
10. ∀e:E. (#(Y es e) ≤ 1)
11. e : E@i
12. #(X es e) ≤ 1
13. #(X es e) = 1 ∈ ℤ
14. single-valued-bag(X es e;A)
15. X es e ~ {only(X es e)}
16. #(Y es e) ≤ 1
17. #(Y es e) = 1 ∈ ℤ
⊢ #(bag-union(∪x@0∈Y es e.{F loc(e) only(X es e) x@0})) ≤ 1
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. B : Type
5. F : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} bag(Top)
6. X : EClass(A)
7. Y : EClass(B)
8. \mforall{}i:Id. \mforall{}a:A. \mforall{}b:B. (\#(F i a b) \mleq{} 1)
9. \mforall{}e:E. (\#(X es e) \mleq{} 1)
10. es-sv-class(es;Y)
11. e : E@i
12. \#(X es e) \mleq{} 1
13. \#(X es e) = 1
\mvdash{} \#(bag-union(\mcup{}x\mmember{}X es e.\mcup{}x@0\mmember{}Y es e.\{F loc(e) x x@0\})) \mleq{} 1
By
Latex:
((Assert single-valued-bag(X es e;A) BY
(BLemma `single-valued-bag-if-le1` THEN Auto))
THEN (FLemma `bag-size-one` [-2] THENA Auto)
THEN HypSubst' (-1) 0
THEN (RWO "bag-combine-single-left" 0 THENA Auto)
THEN Unfold `es-sv-class` (-6)
THEN (InstHyp [\mkleeneopen{}e\mkleeneclose{}] (-6)\mcdot{} THENA Auto)
THEN (Assert \mkleeneopen{}(\#(Y es e) = 0) \mvee{} (\#(Y es e) = 1)\mkleeneclose{}\mcdot{} THENA Auto')
THEN D (-1))
Home
Index