Step
*
of Lemma
simple-loc-comb-2-loc-bounded2
∀[Info,A,B,C:Type]. ∀[f:Id ─→ A ─→ B ─→ C]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
(LocBounded(A;X)
⇒ LocBounded(C;lifting-loc-2(f) o (Loc,X, Y)))
BY
{ ((UnivCD THENA Auto)
THEN RepUR ``loc-bounded-class class-loc-bound`` 0
THEN RepUR ``loc-bounded-class class-loc-bound`` (-1)
THEN D (-1)
THEN ExRepD
THEN InstConcl [⌈L⌉]⋅
THEN Auto
THEN MaUseClassRel (-1)
THEN D (-1)
THEN (Unhide THENA Auto)
THEN ExRepD
THEN InstHyp [⌈es⌉; ⌈a⌉; ⌈e⌉] (-9)⋅
THEN Auto)⋅ }
Latex:
Latex:
\mforall{}[Info,A,B,C:Type]. \mforall{}[f:Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} C]. \mforall{}[X:EClass(A)]. \mforall{}[Y:EClass(B)].
(LocBounded(A;X) {}\mRightarrow{} LocBounded(C;lifting-loc-2(f) o (Loc,X, Y)))
By
Latex:
((UnivCD THENA Auto)
THEN RepUR ``loc-bounded-class class-loc-bound`` 0
THEN RepUR ``loc-bounded-class class-loc-bound`` (-1)
THEN D (-1)
THEN ExRepD
THEN InstConcl [\mkleeneopen{}L\mkleeneclose{}]\mcdot{}
THEN Auto
THEN MaUseClassRel (-1)
THEN D (-1)
THEN (Unhide THENA Auto)
THEN ExRepD
THEN InstHyp [\mkleeneopen{}es\mkleeneclose{}; \mkleeneopen{}a\mkleeneclose{}; \mkleeneopen{}e\mkleeneclose{}] (-9)\mcdot{}
THEN Auto)\mcdot{}
Home
Index