Step
*
1
of Lemma
simple-loc-comb-3-concat-es-sv
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. B : Type
5. C : Type
6. F : Id ─→ A ─→ B ─→ C ─→ bag(Top)
7. X : EClass(A)
8. Y : EClass(B)
9. Z : EClass(C)
10. ∀i:Id. ∀a:A. ∀b:B. ∀c:C. (#(F i a b c) ≤ 1)
11. ∀e:E. (#(X es e) ≤ 1)
12. es-sv-class(es;Y)
13. es-sv-class(es;Z)
14. e : E@i
15. #(X es e) ≤ 1
16. #(X es e) = 0 ∈ ℤ
⊢ #(bag-union(∪x∈X es e.∪x@0∈Y es e.∪x@1∈Z es e.{F loc(e) x x@0 x@1})) ≤ 1
BY
{ ((InstLemma `bag-size-zero` [⌈A⌉;⌈X es e⌉]⋅ THENA Auto)
THEN HypSubst' (-1) 0
THEN (RWO "bag-combine-empty-left" 0 THENA Auto)
THEN Reduce 0
THEN Auto) }
Latex:
Latex:
1. Info : Type
2. es : EO+(Info)
3. A : Type
4. B : Type
5. C : Type
6. F : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} C {}\mrightarrow{} bag(Top)
7. X : EClass(A)
8. Y : EClass(B)
9. Z : EClass(C)
10. \mforall{}i:Id. \mforall{}a:A. \mforall{}b:B. \mforall{}c:C. (\#(F i a b c) \mleq{} 1)
11. \mforall{}e:E. (\#(X es e) \mleq{} 1)
12. es-sv-class(es;Y)
13. es-sv-class(es;Z)
14. e : E@i
15. \#(X es e) \mleq{} 1
16. \#(X es e) = 0
\mvdash{} \#(bag-union(\mcup{}x\mmember{}X es e.\mcup{}x@0\mmember{}Y es e.\mcup{}x@1\mmember{}Z es e.\{F loc(e) x x@0 x@1\})) \mleq{} 1
By
Latex:
((InstLemma `bag-size-zero` [\mkleeneopen{}A\mkleeneclose{};\mkleeneopen{}X es e\mkleeneclose{}]\mcdot{} THENA Auto)
THEN HypSubst' (-1) 0
THEN (RWO "bag-combine-empty-left" 0 THENA Auto)
THEN Reduce 0
THEN Auto)
Home
Index