Step
*
2
3
1
2
of Lemma
simple-loc-comb2-concat-classrel
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : Id ─→ A ─→ B ─→ bag(C)
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
uiff(v ∈ λl,w. concat-lifting2-loc(f;w 0;w 1;l)|Loc; λn.[X; Y][n]|(e);↓∃vs:k:ℕ2 ─→ [A; B][k]
((∀k:ℕ2. vs[k] ∈ λn.[X; Y][n][k](e))
∧ v ↓∈ f loc(e) (vs 0) (vs 1)))
12. ↓∃vs:k:ℕ2 ─→ [A; B][k]. ((∀k:ℕ2. vs[k] ∈ λn.[X; Y][n][k](e)) ∧ v ↓∈ f loc(e) (vs 0) (vs 1))
supposing v ∈ λl,w. concat-lifting2-loc(f;w 0;w 1;l)|Loc; λn.[X; Y][n]|(e)
13. a : A
14. b : B
15. a ∈ X(e)
16. b ∈ Y(e)
17. v ↓∈ f loc(e) a b
⊢ (∀k:ℕ2. λz.[a; b][z][k] ∈ λn.[X; Y][n][k](e)) ∧ v ↓∈ f loc(e) ((λz.[a; b][z]) 0) ((λz.[a; b][z]) 1)
BY
{ (D 0 THEN RepUR ``so_apply`` 0 THEN Reduce 0 THEN Auto THEN IntSegCases (-1) THEN Reduce 0 THEN Auto') }
Latex:
Latex:
1. Info : Type
2. A : Type
3. B : Type
4. C : Type
5. f : Id {}\mrightarrow{} A {}\mrightarrow{} B {}\mrightarrow{} bag(C)
6. X : EClass(A)
7. Y : EClass(B)
8. es : EO+(Info)
9. e : E
10. v : C
11. \mforall{}[es:EO+(Info)]. \mforall{}[e:E]. \mforall{}[v:C].
uiff(v \mmember{} \mlambda{}l,w. concat-lifting2-loc(f;w 0;w 1;l)|Loc; \mlambda{}n.[X; Y][n]|(e);\mdownarrow{}\mexists{}vs:k:\mBbbN{}2 {}\mrightarrow{} [A; B][k]
((\mforall{}k:\mBbbN{}2
vs[k] \mmember{}
\mlambda{}n.[X; Y][n][k](e))
\mwedge{} v \mdownarrow{}\mmember{} f loc(e) (vs 0)
(vs 1)))
12. \mdownarrow{}\mexists{}vs:k:\mBbbN{}2 {}\mrightarrow{} [A; B][k]. ((\mforall{}k:\mBbbN{}2. vs[k] \mmember{} \mlambda{}n.[X; Y][n][k](e)) \mwedge{} v \mdownarrow{}\mmember{} f loc(e) (vs 0) (vs 1))
supposing v \mmember{} \mlambda{}l,w. concat-lifting2-loc(f;w 0;w 1;l)|Loc; \mlambda{}n.[X; Y][n]|(e)
13. a : A
14. b : B
15. a \mmember{} X(e)
16. b \mmember{} Y(e)
17. v \mdownarrow{}\mmember{} f loc(e) a b
\mvdash{} (\mforall{}k:\mBbbN{}2. \mlambda{}z.[a; b][z][k] \mmember{} \mlambda{}n.[X; Y][n][k](e))
\mwedge{} v \mdownarrow{}\mmember{} f loc(e) ((\mlambda{}z.[a; b][z]) 0) ((\mlambda{}z.[a; b][z]) 1)
By
Latex:
(D 0
THEN RepUR ``so\_apply`` 0
THEN Reduce 0
THEN Auto
THEN IntSegCases (-1)
THEN Reduce 0
THEN Auto')
Home
Index