Nuprl Lemma : Comm-process-q_wf

[q:(Id × (pi_prefix() List)) List]. ∀[id:Id]. ∀[st:st:Id fp-> pi_prefix() List].
  (Comm-process-q(q;id;st) ∈ (Id × (pi_prefix() List)) List
   × st:Id fp-> pi_prefix() List
   × Id
   × ((ℕ × Id × ℕ × Name) List))


Proof




Definitions occuring in Statement :  Comm-process-q: Comm-process-q(q;id;st) pi_prefix: pi_prefix() fpf: a:A fp-> B[a] Id: Id name: Name list: List nat: uall: [x:A]. B[x] member: t ∈ T product: x:A × B[x]
Lemmas :  Comm-process-q_aux_wf fpf_wf Id_wf list_wf pi_prefix_wf

Latex:
\mforall{}[q:(Id  \mtimes{}  (pi\_prefix()  List))  List].  \mforall{}[id:Id].  \mforall{}[st:st:Id  fp->  pi\_prefix()  List].
    (Comm-process-q(q;id;st)  \mmember{}  (Id  \mtimes{}  (pi\_prefix()  List))  List
      \mtimes{}  st:Id  fp->  pi\_prefix()  List
      \mtimes{}  Id
      \mtimes{}  ((\mBbbN{}  \mtimes{}  Id  \mtimes{}  \mBbbN{}  \mtimes{}  Name)  List))



Date html generated: 2015_07_23-AM-11_58_50
Last ObjectModification: 2015_01_29-AM-07_40_40

Home Index