Nuprl Lemma : Comm-process-q_wf
∀[q:(Id × (pi_prefix() List)) List]. ∀[id:Id]. ∀[st:st:Id fp-> pi_prefix() List].
(Comm-process-q(q;id;st) ∈ (Id × (pi_prefix() List)) List
× st:Id fp-> pi_prefix() List
× Id
× ((ℕ × Id × ℕ × Name) List))
Proof
Definitions occuring in Statement :
Comm-process-q: Comm-process-q(q;id;st)
,
pi_prefix: pi_prefix()
,
fpf: a:A fp-> B[a]
,
Id: Id
,
name: Name
,
list: T List
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
product: x:A × B[x]
Lemmas :
Comm-process-q_aux_wf,
fpf_wf,
Id_wf,
list_wf,
pi_prefix_wf
Latex:
\mforall{}[q:(Id \mtimes{} (pi\_prefix() List)) List]. \mforall{}[id:Id]. \mforall{}[st:st:Id fp-> pi\_prefix() List].
(Comm-process-q(q;id;st) \mmember{} (Id \mtimes{} (pi\_prefix() List)) List
\mtimes{} st:Id fp-> pi\_prefix() List
\mtimes{} Id
\mtimes{} ((\mBbbN{} \mtimes{} Id \mtimes{} \mBbbN{} \mtimes{} Name) List))
Date html generated:
2015_07_23-AM-11_58_50
Last ObjectModification:
2015_01_29-AM-07_40_40
Home
Index